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AB ST RA CT 

The application of s t rong  magnetic focusing to  signal generating 

image  tubes is  discussed,  and its advantages are pointed out. 

tube suitable for  s t rong  focusing is descr ibed.  Storage ta rge t  and image 

intensifier gain requi rements  t o  overcome video amplif ier  noise a re  d is -  

cussed. 

pract ical  and can offer substantial  improvements  in  per formance  over  

present  tubes i n  as t ronomica l  applications. 

A simple 

It is concluded that s t rong  focused signal generating tubes a r e  
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In a recent  report(*)  the  principles and advantages of s t rong 

magnet ic  focusing fo r  image  conver te rs  of the non-signal generating 

type w e r e  presented. 

generating image tubes and gives a br ief  analysis  of the s o r t  of performance 

that may  be achieved i n  such  tubes using s t rong focusing. 

The present  repor t  extends that t rea tment  t o  signal 

F o r  the sake of concre teness  we shal l  adopt a model  signal 

generating image tube of the f o r m  shown i n  Fig. 1. 

on the semi t ransparent  photocathode f r o m  the left  produces photoelectrons 

that  are acce lera ted  and focused upon the s torage  t a rge t  at the center ,  giving 

rise t o  a sur face  potential pa t te rn  on the right sur face  of the t a rge t  which 

is subsequently r ead  off by a scanning beam of e lectrons generated at the 

right hand photocathode by a flying spot of light f r o m  the cathode r ay  tube 

at the far right, th i s  CRT being out of the magnet ic  field which focuses the 

image  section and scanning beam of the image tube. Such a device represents  

only one of s eve ra l  configurations that can be devised t o  accomplish the signal 

integration and read-out operations in  a signal generating tube employing 

the s t rong focusing principle. 

features  we wi.sh t o  discuss ,  it is convenient t o  confine the analysis  to  it 

alone. 

In th i s  tube light incident 

Since th i s  par t icular  model shows all of the 

The term strong focusing in  the present  discussion means  the 

use  of a n  axial magnet ic  field of sufficient s t rength  t o  cause  electrons moving 

1. Jay  Burns,  "Strong Magnetic Focusing for  Electronographic -Image Tubes", 
LAS-TR-226-5, March  1964. 



f r o m  the signal photocathode to  the s torage  target ,  o r  between the reading 

beam photocathode and the s torage  target ,  to  move In tight helical  paths 

spiral l ing about a magnetic field line, the resolution being determined by 

the rad i i  of these  helical  paths. As shown in  Ref. 1, the diameter ,  6, of 

a resolution element is approximately half the radius  of such a helix and 

is numerically given by the relation 

17 r 
(1) 

max 
mi l l ime te r s  B 6 - -  

where B is the axial field in  gauss,  V 

energy in  e lectron volts. 

f ields a r e  paral le l ;  deviations f rom exact para l le l i sm lead to  small second 

o rde r  l a t e ra l  displacements  of the electrons f rom the i r  init ial  magnetic 

field l ines  and wi l l  be  discussed in  Appendix A. 

is  the maximum init ial  e lectron 
max 

It is assumed that  magnetic and e lec t r ic  accelerat ing 

It is convenient t o  visualize the electrons as being effectively 

confined by the s t rong field to  small imaginary tubes extending along the 

magnetic l ines  of force  f rom a photocathode to  target .  

of diameter ,  6, equal to  the s i ze  of a resolution element,  and the electrons 

within a tube a r e  isolated for  prac t ica l  purposes  f rom electrons of neighbor- 

ing resolution elements.  Moreover,  the "resolution channelss'  formed by 

such imaginary tubes a r e  quite rigid against  l a t e ra l  displacements caused 

by small pertu.rbing e lec t r ic  o r  magnetic fields with the resu l t  that  s t rong 

focusing greatly reduces dis tor t ion of the image by such perturbing fields. 

With s t rong magnetic fields the re  is no focusing of the electron image i n  

the usual s ense  but r a the r  a rigid collimation of the electrons f rom each 

resolution element of the photocathode; therefore  the s t rength of the e lec t r ic  

field that acce le ra tes  the electrons f rom the cathode plays no ro le  in  determin-  

ing the position of a focal plane, nor  is t h e r e  any exa.ct relation between 

These tubes a r e  
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e lec t r ic  and magnet ic  field s t rengths  that mus t  be  maintained t o  focus the  tube. 

The velocity spread  of the photoelectrons plays only a minor  ro le  in  determining 

resolution i n  s t rong focused tubes i n  contrast  with tubes focused by conventional 

weak fields of the o r d e r  of a few hundred gauss. 

The principal problem i n  design of a s t rong focused, signal generating 

image tube a r i s e s  f r o m  the ve ry  l a t e ra l  rigidity of the electrons which consti tutes 

its chief virtue. 

by a n  electron gun because  the  beam cannot be deflected to  scan  the s torage  target .  

Instead of a point sou rce  reading beam f r o m  a n  electron gun, it is necessa ry  to  

use  a n  extended source  such as the photocathode shown at the right end of the  

tube i n  Fig. 1 and t o  produce the reading beam by illuminating the reading beam 

cathode with a fine spot of light that  i s  moved about t o  provide scanning. 

reading electron beam at any point t r ave l s  in a tube of magnetic confinement 

between cathode and t a rge t  exactly as the original photoelectrons did, and i f  

the  light spot is small enough, the reading and wri t ing s teps  will both have 

essent ia l ly  the s a m e  resolution given by Eq. 1. 

This rigidity prevents  one f r o m  using a reading beam generated 

The 

Four  important  advantages resu l t  f r o m  reading the t a rge t  i n  this  

way: 

regions of the image to  contribute the charac te r i s t ic  highlight halo of convention- 

ally focused tubes,  (b)  t h e r e  is no appreciable  lateral bending of the reading 

beam into sharply defined highlight a r e a s  f r o m  adjacent dark  regions, which 

gives r i s e  to  the  common "black bo rde r  effect", ( c )  s ince the reading beam 

electrons have a Maxwellian energy tail appropriate  t o  a ve ry  low t empera tu re  

emit ter ,  namely, t o  the  reading beam photocathode which can  be  cooled t o  make  

thermionic  emiss ion  ex t remely  small, t h e r e  is fo r  all pract ical  purposes  a 

s h a r p  upper limit to  e lectron velocit ies in  the reading beam tha.t facil i tates r e -  

sett ing the ta rge t  sur face  potential t o  a p rec i se  va1u.e after the image is read,  

(a)  the re  is no redis t r ibut ion of reading beam electrons around the bright 

3 



and, finally, (d)  the s t rong confinement of e lectrons by the field pe rmi t s  a high 

degree  of modulation of the reading beam i n  the p rocess  of recharging the t a rge t  

as the image  potential pat tern is being read, and high modulation improves  the 

signal -to -nois e ratio. 

Unfortunately the advantages just  mentioned a r e  not obtained without 

The means  descr ibed  for  reading the s tored  image  does not lend itself penalty. 

t o  amplification of the returned reading beam with a n  e lec t ron  multiplier.  

the video signal is taken d i rec t ly  f r o m  a conductive coating on the left  s ide of the  

ta rge t  o r  f rom the reading beam photocathode itself depending upon the signal 

polarity desired.  If noise i n  the video ampl i f ie r  is to  b e  negligible, then some 

gain must  be  obtained i n  the tube i tself  by a p rocess  such  as secondary electron 

multiplication whichdoes not appreciably degrade the signal-to-noise ratio. 

multiplication can b e  obtained f r o m  t r ansmiss ion  secondary emiss ion  through 

Instead 

Such 

t a rge t s  covered with low density KC1 !'smoke", e. g., the  so-called SEC ta rge ts  (2)  , 

the l e t t e r s  standing fo r  secondary electron conductivity. 

and used, these  SEC t a rge t s  give stable gains in  the range 40-60, and in  applications 

that permi t  the picture  to  be  r ead  out slowly at a slow scannj-ng rate, the video 

bandwidth can be reduced to  optimize the signal-to-noise ra t io  with respec t  t o  

amplif ier  noise(3) and under cer ta in  conditions (Appendix B )  the SEC t a rge t  alone 

can provide enough gain to  overcome amplif ier  noise. 

P rope r ly  prepared  

Under these  conditions, 

2. G. W. Goetze, "Advances in  Electronics  and Elec t ron  Physics",  L. Marton, 
Ed., Vol. XVI, p. 145, Academic Press, N. Y. (1962). 

3. R. Thiele, "Adv. i n  Electronics  and Electron Phys. Vol. XII, Academic 
P r e s s ,  N. Y. p. 277 (1960). 

4 



the  l imiting noise in  the picture  can  b e  reduced to  little m o r e  than the fundamental 

shot noise i n  the original photoelectric image  which r ep resen t s  the ult imate 

performance possible for  a given photocathode quantum efficiency. 

slow readout plus the  SEC t a rge t  plus in  many cases  some  added image  intensi-  

fications between photocathode and s torage  ta rge t  a r e  essent ia l  t o  rea l ize  the 

full low light level  per formance  of the s t rong focused tube. The relation between 

frame time, number of l ines  p e r  picture,  and internal  gain required fo r  a photo- 

cur ren t  noise l imited tube is given in  Appendix B where  it is shown that a tube 

having a resolution of 50-100 l ine pairs/" operating into a video amplif ier  

with a n  input capacitance of - 5 ppf needs internal  gain of - > I O 4  i f  the  load r e s i s t o r  

is at room tempera ture  and a gain of > 135 for  the load r e s i s t o r  at liquid helium 

tempera ture  (4. 2 K). 

2 by present  SEC targets ,  but the  f o r m e r  value is unrealizable with the SEC 

t a r  get alone. 

Therefore,  

- 
0 The l a t t e r  gain can b e  approached within about a factor  

Fortunately,  it is not necessary  to  develop all of the gain i n  the  t a rge t  

P a r t  o r  mos t  of it may  b e  obtained by intensifying the photoelectric image itself. 

before  it reaches  the s torage  target .  

image converter  o r  the t r ansmiss ion  secondary emiss ion  (TSE) intensifier can 

be used for  this purpose with the intensifier being incorporated into the signal 

generating tube between photocathode and SEC s torage  target .  

f ie r  would s e e m  to  b e  par t icular ly  well  suited t o  use  i n  a s t rong  focused tube 

because the inters tage voltages i n  th i s  intensifier a r e  low enough s o  the dynodes 

may b e  spaced fair ly  c lose  together  making the tube m o r e  compact, and compact- 

ness  is of some prac t ica l  importance i n  keeping down the cost  of the associated 

superconducting solenoid and cryostat .  

of the intensifier i f  it works  into a n  SEC target.  

can b e  obtained i n  the TSE intensifier,  t h r e e  o r  four s tages  would suffice. 

s t rong focusing the resolution l o s s  in the TSE intensifier would b e  negligible. 

E i ther  the cascade photocathode-phosphor 

The TSE intensi-  

A total  gain of - 200 i s  all that is requi red  

Since gains pe r  s tage  of 5-6 

With 
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The preceding discussion is based upon a ta rge t  s torage  capacity of 
5 - 10 

would be  charged. 

possible to  achieve m o r e  gain than the minimum needed to  r a i se  the signal 

above amplif ier  noise. The extra gain s e r v e s  the useful purposes  of reducing 

the integration time required to  get a sat isfactory image  at a given light level  

provided one does not use  m o r e  gain than is needed just  to  detect  the a r r i v a l  

of a n  individual photon. 

t a rge t  and reduces the dynamic range of light intensi t ies  that can be  recorded 

before  the ta rge t  sa tura tes .  

of 10 

range is given by the e x p r e s s i o n .  Oln 

electrons pe r  resolut ion element to  which the picture  highlight e lements  

If a n  intensif ier  is incorporated into the tube, it is easi ly  

More  gain than this  was tes  s torage  capacity of the 

The maximum useful gain for  a ta rge t  with capacity 
5 

electrons p e r  resolut ion element capable of reproducing a 100:1 dynamic 

= gy ( see  Appendix B for  notation). With 

n the s torage  capacity, equal to  10 5” and a quantum efficiency y = 0. 1 the 
4 

S’ 

maximum value of g is 1 0  

come amplif ier  noise. 

fier and ta rge t  gains). 

efficiency photocathode somewhat higher gan could b e  put to  good use. 

above example, g = 10 

target ,  a quantity of charge  just  observable above amplif ier  noise (Appendix B)  

under typical conditions. 

which is the s a m e  as the minimum required t o  over -  

(It should be  mentioned that g h e r e  includes both intensi-  

With a l a r g e r  s torage  capacity o r  a lower quantum 

In the 

charges  on the s torage  
4 3 

and y = 0.1 would deposit  10 

The present  r e m a r k s  may  be summar ized  by saying that a number 

of the vir tues  of s t rong  magnetic focusing as applied to  signal generating image 

tubes have been cited and one example of such a tube has  been described. 

of ta rge t  and/or associated image  intensif ier  gain requirements  t o  overcome video 

amplif ier  noise shows that  e i ther  the input load r e s i s to r  mus t  be cooled to  very  

low t empera tu res  o r  image  intensification mus t  be  employed between photocathode 

Analysis 

6 



and target.  

available f rom present  tubes by a substantial  margin  la rge ly  because of the 

favorable e lectron optical p roper t ies  of the s t rong magnetic focusing. 

focusing se rves  principally t o  reduce the common electron optical aberrat ions 

and distortions t o  negligible levels.  

bution during readout, point images  such as s te l la r  images  no longer grow i n  

s i ze  with exposure, and as a resu l t  the amplitude of the video signal for  such 

an  object is proportional to  its br ightness  which is not the case  in  a conventional 

signal generating tube l ike the image orthicon. 

da ta  can be  obtained f rom pulse height measurements  on the video signal i n  a 

s t rong focused tube which is a grea t  advantage in  many kinds of as t ronomical  

work, par t icular ly  where  the output signal is meant t o  be  processed by a computer. 

The overal l  performance of such a tube is expected t o  exceed that 

Strong 

Since it a l so  eliminates e lectron red is t r i -  

Thus quantitative photometric 
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APPENDIX A 

Image Perturbat ions Caused by Weak Elec t r ic  and Magnetic Fields  

Consider the motion of an electron in  para l le l  e lec t r ic  and magnetic 

fields shown in  Fig. 2. 

R = mcv/eB i n  a plane normal  to  the magnetic field l ines  (m is electron mass, 

v its velocity in  the plane of the orbit, e and c a r e  the electronic  charge and 

speed of light respectively,  and B is the field strength).  If an  e lec t r ic  field 

acce lera tes  the electron along the x-axis in Fig. 2, the motion wi l l  be a helix 

of radius R with increasing pitch along x, and the t ra jec tory  wil l  be  as shown 

in the figure. 

The motion in a pure  magnetic field is  a c i r c l e  of radius 

If the electron moves i n  perpendicular e l ec t r i c  and magnetic fields 

as shown in  Fig. 3 

electron is initially at res t .  

the  motion follows the cycloidal path shown provided the 

The amplitude of the cycloid is given by the relation 

A = 1 1 . 4  E cent imeters  - 
2 

B 

and its period along the x-axis by 

L = ITA (A-2)  

where E is the e lec t r ic  field in volts/cm and B is the magnetic field in  gauss. 

Consider first '  the case  in which a small perturbing rnagnetic field 

of s t rength B 

Combining B 

exis ts  normal  to  the axial  magnetic and e lec t r ic  fields B 
1 0 

and B 
0 1 

and E. 

vectorially leads t o  a new resul tant  field B*  which defines 

8 



-1 B a new magnetic axis displaced with respect  to  the old axis  by 8 = tan 

Now electrons wil l  sp i r a l  about the new field l ines  B' and will s ee  a perturbing 

e lec t r ic  field normal  to  B', th is  perturbing e lec t r ic  field being the component 

of the original E 

wi l l  therefore  be E 

( l/Bo). 

perpendicular to  B'. The perturbing e lec t r ic  field component 
0 

B 1 / B O  
s in  8 .  Since the perturbation is sma l l  s in  8 z 8 = 

0 

and 

i 

E = E B1/B 
1 0  0 (A-3)  

Therefore,  the electrons will sp i r a l  about a l ine s t re tched into the shape of a 

cycloid (Fig. 4) of amplitude 

3 4 
Typical values of E and B a r e  1 0  volts/cm and 1 0  gauss respectively so  

A = 10 

as a perturbation. 

0 0 -8 
B c m  which is quite negligible for any B 1 1 small enough to  be t rea ted  

Consider next a small perturbing e lec t r ic  field, El, normal  to the 

E . Again the electron path wil l  be a sp i r a l  about a l ine s t re tched 
0' 0 

axis of B 

into cycloidal shape and the amplitude of the cycloid i s  

A =  11.4 centimeter s (A-5) 
2 

B 
0 4 -7 

gauss, A 0 10 F o r  Bo = 10 E cm, and this is a l so  negligible for any weak 1 
perturbing field, 

9 



The conclusion is that i n  s t rong focusing with axial fields of the 

o rde r  of a few kilogauss the electrons a r e  not displaced la te ra l ly  by perturbing 

e lec t r ic  o r  magnetic fields. 

10 



APPENDIX B 

Targe t  Gain Needed to  Overcome Video Amplifier Noise 

Consider a square  image  tube s torage  t a r g e t  having N TV lines,  

picture  e lements  ('since t h e r e  are 2 TV l ines  to  a s t r ip  one resolution 1 2  
4 o r  - N 

element  wide due to  the  convention for  counting TV lines).  

read off i n  T seconds, the highest  frequency in  the video signal will  be 

If this  picture  is 

1 N2 N2 
V = 2 (7 ) =  87 max 

and th is  will  b e  the  bandwidth requi red  f o r  the video amplifier.  

beam will  dwell for  a t i m e  t 

The reading 
-1 

= (2  v )  on a single picture  element. 
0 

Let  n light quanta f r o m  a stellar point image fall on a resolution 
0 

element of s i ze  6 during the image  integration time. 

efficiency of the photocathode is y and the average  internal  multiplicative 

electron gain of the s torage  t a rge t  is g, then each incident photon will produce 

on the average  yg s tored  electrons on the target.  

p e r  resolution element of the t a rge t  

If the average quantum 

If n e lectrons a r e  s tored 
S 

n 
S n = -  

0 gY 

and i f  the reading beam can r ead  off a fraction, f, of this  s tored charge i n  one 

scan, then the signal cur ren t  f r o m  the resolution element being considered will  

b e  

2 
efn efn N efgyn N 

S s -  0 i = - -  - - 
s t  47 47 

0 
(B-3)  
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-19 w h e r e  e is electronic  charge,  1. 6 x 10 coulombs, and i is the  signal 

cur ren t  i n  a m p e r e s  f r o m  the resolution element  under consideration. 
S 

The m e a n  squa re  noise i n  the signal cur ren t ,  i taking into 
S'  

account var iances  i n  v and g, may  be shown(4' t o  b e  

If the voltage input t o  the video amplif ier  is developed a c r o s s  a n  

input r e s i s to r  R at a t empera tu re  T, the noise generated i n  this  r e s i s to r  is 

4kTv = -  2 
R R Ai 

and i f  the  equivalent noise  res i s tance  of the  first amplif ier  tube is R 

by s t r a y  capacitance C, the  noise f r o m  this  source  will  be 

shunted e 

Rev (1 t - 4kT - -  - 2 
3 

R2 A A i  

< 
Note that RCv\ 1 since the bandwidth cannot appreciably exceed the frequency 

at which the s t r a y  capitance begins to  shunt the  signal cu r ren t  around the load 

res i s tance  R. 

4. E. F. DeHaan, "Advances i n  Electronics  and Elec t ron  Physics", Vol. XII, 
L. Marton, Ed. ,  Academic P r e s s ,  N. Y. ,  1960, p. 291. 

12 
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If the performance of the  sys t em is not t o  b e  degraded by the noise 

in  the load r e s i s t o r  and video amplifier,  the  gain, g, mus t  b e  l a rge  enough s o  

2 
A ‘ + A i  Ais2 >> Ai R (B-7) 

Applying th i s  c r i te r ion  and rear ranging  with the help of (B-1) and 
f 

(B-2) we have 
i 

This expression can be  simplified considerably by noting that: 

emi t t e r s  y<< 1, (b) a video amplif ier  would be  chosen i n  which R <<R, and 

( c )  R would b e  chosen so 2.rr RC v N 1. 

good cr i te r ion  fo r  minimum SEC t a rge t  gain becomes  simply 

(a) for  photo- 

e 
Under these  conditions a sufficiently 

2 k T  
g >  -3 (B-9) 

S 
eLRvfn 

This express ion  may  b e  put into a s t i l l  m o r e  convenient f o r m  by 

18 7 

2 2 noting that i f  ZrRCv r- I,, the  factor  2 kT/e Rv = 4rkTC/e . 
has a value - 2 x 10 

c N 5 ppf. Therefore  

The l a t t e r  quantity 

C at room tempera tu re  o r  approximately 10 fo r  a typical 

g >  - 1 o7 
fn  

S 

(B-10) 

fo r  a load r e s i s t o r  at room tempera ture .  



The s torage capacity of an  SEC t a rge t  is repor ted  by Boerio and 
10 4 5 

C ~ e t z ' ~ )  to  be - 3 x 10 

per  resolution element ( 6  = . 01 t o  . 0 2  mm).  

would yield 1-3% photometric accuracy. 

tube, the minimum targe t  gain is g z 10 

tube above SEC ta rge t  gains. 

could be fur ther  increased,  for  the  value quoted by Boerio and Coetze does not 

produce an  internal  e lec t r ic  field in  the KC1 l aye r  approaching the breakdown value. 

Another approach would be to  cool R to liquid helium tempera ture ,  a feasible 

s tep with a s t rong focused tube employing a superconducting solenoid. 

ponding reduction in  g would be  roughly a factor of 75 which is the reduction in  T. 

Therefore,  a g of only - 135 would be  needed, and this is within a factor 2 of 

commonly obtained gains in  SEC targets .  

potential much higher values of g can be  ~ b t a i n e d ' ~ ) ,  but under these conditions g 

var ies  during the signal integration period and this  introduces non-linearity into 

the response of the tube, ruling out quantitative photometry. 

magnetic fields on g and on s torage capacity of SEC t a rge t s  is unknown and needs 

to be investigated before any s t rong focused tube development is undertaken. 

e lectrons p e r  cm2  o r  between 3 x 10 and 10 electrons 
3 A minimum value of n 10 electrons 

S 

If f 

which is m o r e  than two o rde r s  of magni-  

1, as it can be  in  a s t rong focused 
4 

It is possible that the SEC ta rge t  s torage capacity 

The c o r r e s -  

Under cer ta in  conditions of surface 

The effect of high 

5. A. H. Boerio and C. W. Goetze, Westinghouse Scientific P a p e r  62-112-252- 
P3, W e  s tinghous e Res e a r  c h Labor  a t  or  ie  s , Pittsburgh, Pennsylvania. 
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Photocathode 

Fig.  1. Sketch of a typical arrangement for a strong field focused 
signal generating image tube with flying spot generated readout. 
The tube is  not to scale. 
a helium cryostat (not shown) designed with both ends open for the 
light to have access. Only the superconducting coil is at liquid He 
temperature; the tube temperature can be any desired value. 

In practice it would be located deep within 



Z 

Fig. 2. Tra jec tory  of a charged par t ic le  in paral le l  e lectr ic  
and magnetic fields. 
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Fig. 3.  Trajec tory  of charged par t ic le  i n  c ros sed  e lec t r ic  and 
magnetic fields. 
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Fig. 4. Trajec tory  of charged par t ic le  i n  paral le l  e lectr ic  and 
magnetic fields with perturbing t r a n s v e r s e  e lec t r ic  field. 

NASA-Langley, 1965 D-2698 
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